Areas and Moments of Inertia* for some Common Cross-Sections

RECTANGLE

$$
\begin{aligned}
& A=b h \\
& I_{y y}=b h^{3} / 12 \quad I_{z z}=h b^{3} / 12 \quad I_{y z}=0
\end{aligned}
$$

TRAPEZOID

$A=h(a+b) / 2 \quad z_{c}=h(2 a-b) / 3(a-b)$
$I_{y y}=h^{3}\left(a^{2}+4 a b+b^{2}\right) / 36(a+b)$

CIRCLE

$A=\pi r^{2} \quad J=\pi r^{4} / 2$
$\mathrm{I}_{\mathrm{yy}}=\mathrm{I}_{\mathrm{zz}}=\pi \mathrm{r}^{4} / 4 \quad \mathrm{I}_{\mathrm{yz}}=0$

SEMICIRCLE

$\mathrm{A}=\pi \mathrm{r}^{2} / 2 \quad \mathrm{Z}_{\mathrm{c}}=4 \mathrm{r} / 3 \pi$
$\mathrm{I}_{\mathrm{yy}}=0.1098 \mathrm{r}^{4} \quad \mathrm{I}_{\mathrm{zz}}=\pi r^{4} / 8 \quad \mathrm{I}_{\mathrm{yz}}=0$

ELLIPSE

$$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{ab} \\
& \mathrm{I}_{\mathrm{yy}}=\pi \mathrm{ab}^{3} / 4 \quad \mathrm{I}_{\mathrm{zz}}=\pi \mathrm{ba}^{3} / 4 \quad \mathrm{I}_{\mathrm{yz}}=0
\end{aligned}
$$

* NOTE: All axes are centroidal axes

